Title: Anisotropic piezoresistivity characteristics of aligned carbon nanotube-polymer nanocomposites
Engin C Sengezer, Gary D. Seidel,
Dept. of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
Robert J. Bodner,
Dept. of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
Smart Materials and Structures -- 2017 -- Vol. 26, No. 9, pp 095027-1-24
Abstract
Dielectrophoresis under the application of AC electric fields is one of the primary fabrication techniques for obtaining aligned carbon nanotube (CNT)-polymer nanocomposites, and is used here to generate long range alignment of CNTs at the structural level. The degree of alignment of CNTs within this long range architecture is observed via polarized Raman spectroscopy so that its influence on the electrical conductivity and piezoresistive response in both the alignment and transverse to alignment directions can be assessed. Nanocomposite samples consisting of randomly oriented, well dispersed single-wall carbon nanotubes (SWCNTs) and of long range electric field aligned SWCNTs in a photopolymerizable monomer blend (urethane dimethacrylate and 1,6-hexanediol dimethacrylate) are quantitatively and qualitatively evaluated. Piezoresistive sensitivities in form of gauge factors were measured for randomly oriented, well dispersed specimens with 0.03, 0.1 and 0.5 wt% SWCNTs and compared with gauge factors in both the axial and transverse to SWCNT alignment directions for electric field aligned 0.03 wt% specimens under both quasi-static monotonic and cyclic tensile loading. Gauge factors in the axial direction were observed to be on the order of 2, while gauge factors in the transverse direction demonstrated a 5 fold increase with values on the order of 10 for aligned specimens. Based on Raman analysis, it is believed the higher sensitivity of the transverse direction is related to architectural evolution of misaligned bridging structures which connect alignment structures under load due to Poisson's contraction.