ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems in Session 1-7 Advanced Composites and Nanostructures I Colorado Springs, Colorado, USA 21 - 23 September 2015
SMASIS2015-8958
Multi-Functional Topology Optimization of Piezoresistive Nanocomposite Beams
Ryan Seifert, Mayuresh Patil, Gary Seidel, and Gregory Reich
Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061-0203, USA
This paper presents an analysis of optimization for multifunctional nanocomposites. A carbon nanotubeepoxy composite is optimized for maximum resistance change and minimum strain energy. Analysis uses a finite element method and includes the coupled physics of mechanics, electrostatics, and piezoresistivity. The problem is solved first for minimum strain energy, then two resistance maximization problems are solved. For all optimization, sensitivities are obtained analytically. After solving the individual problems a weighted sum approach is used in the multi-objective optimization of both minimizing the strain energy and maximizing the resistance change. Comments are made as to the effect of the topology optimization method as a design tool, on the shape of the optimized cross sections, and on the possible extensions on using the coupled physics topology optimization algorithm.